Puncionadeira

Como fazer o layout e projetar a matriz progressiva de várias estações

Como Layout Design de Matriz Progressiva Multiestação

Tempo estimado de leitura: 30 minutos

Principle of Multi-station Progressive Die Layout and Design

No progressive stamping process parts in the progressive die with punch, each blunt once is sent to a forward step, arrive at a different location. Due to the processing content of each other is not the same for each station, therefore, in the progressive die design process, want to determine from a sheet metal blank to product parts forming process, the content of each station to the machining process, the design process is the layout design.

Layout design is one of the keys of multi-station progressive die design. The optimization of the layout is related to the utilization rate of materials, the precision of the workpiece, the difficulty and service life of the mold manufacturing, and the coordination and stability of the various stations of the mold. The layout of the multi-station progressive die should comply with the layout principle of an ordinary punching die and consider the following points.

  • At first make stamping parts to expand the blank sample (3~5), repeatedly test row on the map. After the preliminary scheme is determined, at the beginning of the layout of the arrangement of punching, incision, waste cutting, and other separation station. Then to the other end of the arrangement of forming station, finally arrange the separation of the workpiece and the carrier. In the arrangement of the station, to avoid punching half hole, to prevent uneven punch force and break.
  • The first station is generally arranged punching and punching process guide hole. The guiding pin is set at the second station to guide the belt material. In the following stations, the guiding pin is set according to the number of stations and the station where the movement is easy to occur. The guiding pin can also be set at every 2~3 stations in the following stations. The third station can set the error detection device of the feeding step according to the positioning accuracy of the stamping strip material.
  • The number of holes on the stamping parts is more, and the position of the hole is too close, can be distributed in different stations on the punching. But the hole can not be due to the influence of the subsequent forming process and deformation. For holes requiring relative position accuracy, synchronous flushing should be considered. When the mold cannot be blown out synchronously due to the limitation of mold strength, measures should be taken to ensure their relative position accuracy. The complex hole can be decomposed into some simple hole out step by step.
  • When there is a local reinforcing bar, it should be arranged before punching to prevent the deformation of the hole caused by the reinforcing bar. When the sudden package, if there is a hole in the center of the sudden package, to facilitate the flow of materials, a small hole can be punched first. Then the pressure of the sudden package is rushed to the required aperture.
  • To improve the strength of die inserts, discharge plates, and fixed plates. To ensure that the forming parts of the installation position do not interfere, can be set up in the layout of the empty station. The number of the empty station according to the requirements of the mold structure.
  • For bending and deep drawing forming parts, the deformation degree of each station should not be too large.The stamping parts with a large deformation degree can be formed several times. This is not only conducive to quality assurance but also conducive to the debugging and finishing of the mold. For the forming parts that require high precision, the shaping station should be set up. To avoid the deep drawing of the material in the deformation zone of U-shaped bending parts, it should be considered to bend 45 first, and then bend to 90°.
  • In the layout of progressive drawing, techniques such as cutting and grooving before drawing can be applied to facilitate the flow of materials.
  • The choice of forming direction (up or down) should be conducive to the design and manufacturing of the mold, is conducive to the feeding of the star Chang. If the forming direction is different from the stamping direction, the oblique slider, lever and swing block, and other mechanisms can be used to convert the forming direction.

Content of Multi-station Progressive Die Layout

The Result of the Layout Design of the Multi-station Progressive Die is the Layout Drawing. Once the Layout Drawing is Determined, the Following Aspects are Determined.

  • Stamping sequence of each part of the blanked parts in the die.
  • The number of mold stations and the processing content of each station.
  • The arrangement and orientation of the blanked parts on the strip material. And reflect the high and low utilization rate of materials.
  • The nominal size of the step distance and the way to set the distance.
  • The width of the material.
  • Form of the carrier.

Layout in Progressive Die Design Includes Three Aspects. That is, Blank Layout, Punching Edge Shape Design, and Working Procedure Layout.

  • Blank layout refers to the arrangement of the developed shape of the parts on the strip. The blank layout must be carried out in the design of all types of stamping dies.
  • The design of the punching edge shape refers to the decomposition of the geometric shape of the parts with a complex shape or inner hole to determine the stamping sequence of the shape of the parts. Which is the design work that must be completed before the process layout.
  • process layout to determine the mold by the number of stations, each station of the specific processing procedures, is the blank layout and punching edge shape design of the synthesis. is the key to the design of the progressive die. Process layout is referred to as layout.

A schematic diagram of the above layout is shown in Fig. 1-1.

Fig. 1-1 Diagrama esquemático do Layout Progressive Die
Fig. 1-1 Schematic Diagram of Layout

Blank Layout

The blank layout is to determine the cutting azimuth of the blank shape of stamping parts on the strip and the relationship between the blank and the adjacent blank. Blank in the plate can be intercepted a lot of azimuths, so there is a variety of blank layout schemes. The following problems need to be solved when designing the blank layout.

  • Type of layout.
  • Determining the boundary value of the overlap.
  • Determination of advance (step) distance.
  • Determination of strip width.
  • Material utilization rate.

The above content in addition to the edge value is larger than the ordinary stamping. Other content is the same as the ordinary stamping, and will not be repeated here.

Cutting Edge Design

In the design of progressive die, to achieve the complex parts (such as bending, deep drawing, forming, and other processes of the stamping parts) stamping or simplifying the structure of the die, the complex shape and inner shape of the hole is usually cut several times. The design of the punching edge shape is to decompose the complex inner or outer contour into several simple geometrical units. Each unit forms a new punching contour through combination and complement. To design a reasonable punching edge shape of the punch and concave die. This is shown in Figure 1-2. This process needs to address the following issues.

Decomposition and Reorganization of Contour

The stamping parts encountered in the actual products are often very complex. The shape design of the punching edge is the decomposition and reorganization of the cutting edge, as shown in Fig. 1-2 (b).

Fig. 1-2 Projeto da Matriz Progressiva da Borda de Perfuração
Fig. 1-2 Design of Punching Edge

Cutting edge decomposition and recombination should be carried out after the blank layout, should follow the following principles.

  • It is beneficial to simplify the structure of the die. The number of decomposed sections should be as little as possible. The shape of the punch and concave dies formed after recombination should be simple, regular, with sufficient strength. It should be easy to process, as shown in Figure 1-3.
Fig. 1-3 Requisitos para Decomposição da Borda de Corte Matriz Progressiva
Fig. 1-3 Requirements for Cutting Edge Decomposition
  • The cutting edge decomposition should ensure the shape, size, precision, and use requirements of the product parts.
  • After the decomposition of the inner contour, the connection between the sections should be straight or smooth.
  • Segmented lap contact should be as little as possible. Lap contact position to avoid the weak parts of the product parts and important parts of the shape, in an unobstructed position.
  • The straight edge with tolerance requirements and the edge with sliding fit requirements in the process of use should be cut at a time, and should not be divided. To avoid the accumulation of errors. If surface A, as shown in Fig. 1-4(a), is the mating surface in the use process. It is better to choose the cutting edge decomposition as shown in Fig. 1-4(c).
  • Complex shape and narrow groove or long and thin buttock part of the best decomposition, the best decomposition of complex shape.
  • The burr direction should be decomposed when there are different requirements.
  • The cutting edge decomposition should consider the processing equipment conditions and processing methods, to facilitate processing.

The decomposition and reorganization of the cutting edge are not unique, as shown in Fig. 1-4. The design process is flexible, empirical, and difficult, so several schemes should be considered in the design. And the optimal scheme should be selected through comprehensive comparison.

Fig. 1-4 Exemplo de Decomposição da Borda de Corte Die Progressivo
Fig. 1-4 Example of Cutting Edge Decomposition

The Basic Form of Sectional Lap Joint in Contour Decomposition

After the decomposition of the inner contour, lap joints are bound to form between each segment. Improper decomposition will lead to quality problems such as burr, wrong teeth, sharp Angle, collapse Angle, uneven and non-smooth lap joints.

There are three common forms of lap joints.

  • Handover, as shown in Fig. 1-5 (a). The handover refers to the blank contour after decomposition and reorganization, the cutting edge between each other. There is a small amount of overlap.
Fig. 1-5 Modo de lapidação Matriz progressiva
Fig. 1-5 Lapping Mode

Cutting edge decomposition according to the handover way is more favorable to ensure the connection quality of the handover joint. It is widely used. Handover quantity should be greater than 0.5 times the thickness of the material; If not limited by the size of the handover hole, the handover amount can reach 1~2.5 times the thickness of the material.

  • Flat connection, as shown in Fig. 1-5 (b). A flat connection is to divide the straight edge of the parts into two cutting. Two cutting edges are parallel and collinear, but do not overlap.

When flat joint, the step precision, punch, and concave die manufacturing precision is higher requirements. Which is easy to produce burr, wrong teeth, unequal quality problems. In addition to must be arranged like this, should try to avoid using this lap method. The direct pin should be set near the flat connection. If the workpiece is allowed, the width of the second blanking should be increased. And the punch should be trimmed to make a small bevel (generally 3~5).

  • Cut, as shown in Fig. 1-5 (c). Cutting is in the blank arc section of sectional punching lap form, that is, in the first station punching a part of the arc section. Then cut off the rest of the subsequent station, before and after the two sections should be tangent.

Process Layout

The main content of the working procedure layout needs to be solved in the following aspects.

Process Determination and Sequencing

The sequence of the process is in favor of the next process for the principle, do easy process first, then difficult, first punch plane shape and then punch three-dimensional shape.

The Process Layout of Stage Blanking

  • For punching parts with holes, punching first and punching later, as shown in Fig. 1-8.
(a) A peça de trabalho (b) Diagrama de layoutFig. 1-8 Exemplo de layout de supressão de palco (I)
(a) The workpiece (b) Layout diagram
Fig. 1-8 Example of Stage Blanking Layout (I)
  • Try to avoid using the punch and concave dies with complex shapes, that is, decompose the complex shaped holes or shapes and adopt the method of segmented excision, as shown in Fig. 1-4 and Fig. 1-5.
  • The relative size of parts with strict requirements should be rushed out at the same station. If it is not possible to rush out at the same station, you can arrange to rush out at a nearby station, as shown in Fig. 1-9.
(a) A peça de trabalho (b) Diagrama de layoutFig. 1-9 Exemplo de layout de supressão de palco (II)
(a) The workpiece (b) Layout diagram
Fig. 1-9 Example of Stage Blanking Layout (II)
  • The contours with high size and shape requirements should be flushed out at the rear station.
  • The punching of the weak part should be arranged at the earlier station.
  • When the distance from the hole to the edge is small and the accuracy of the hole is high, if the hole is punched first and then the shape is punched, it may lead to the deformation of the hole. In this case, the outer edge of the hole should be flushed out before punching, as shown in Fig. 1-9.
  • For the punching process with a large contour perimeter, the punching process should be arranged in the middle as far as possible to make the pressure center coincide with the geometric center of the mold.

The Process Layout of Progressive Bending

  • For bending parts with holes, it is generally necessary to punch holes first, then punch and cut off the surrounding materials of bending parts, then bend them again, and finally remove the rest of the waste to separate the workpiece from the strip, as shown in Fig. 1-10. However, when the hole is close to the bending deformation area and accuracy is required, it should be bent before punching to prevent the hole from deformation.
(a) A peça de trabalho (b) Vista estendida (c) Diagrama de layoutFig. 1-10. Um exemplo de layout de dobra
(a) The workpiece (b) Stretch-out view (c) Layout diagram
Fig. 1-10. An Example of a Bend Layout
  • When bending, the outside should be bent first and then the inside, as shown in Fig. 1-11. When the bending radius is too small, a shaping procedure should be added.
Fig. 1-11 Schematic Diagram of Decomposition of Bending Process of Complex Bending Parts
Fig. 1-11 Schematic Diagram of Decomposition of Bending Process of Complex Bending Parts
  • The direction of the burr should generally be located inside the bending zone to reduce the risk of bending rupture and improve the appearance of the product.
  • The bending line should be arranged in a direction perpendicular to the fiber. When the parts are to be bent in the mutually perpendicular direction or several directions, the bending line should be at an Angle of 30°~60° with the fiber direction of the strip material.
  • In one station, the degree of bending deformation should not be too large. For complex bending parts, they should be decomposed into a combination of simple bending processes, which are formed by successive bending, as shown in Fig. 1-11. For complex bending parts requiring high precision, the precision of the workpiece should be guaranteed by the shaping procedure.
  • When two bending parts of a part have dimensional accuracy requirements, they should be formed at the same station to ensure dimensional accuracy.
  • For small single-angle bending parts, to avoid carrier deformation and lateral sliding during bending, they should be bent in pairs and then cut apart.
  • As far as possible, the direction of punch stroke is taken as the bending direction to simplify the mold structure.

The Layout of the Process of Progressive Deep Drawing

In the process of multi-station progressive deep drawing, unlike single process deep drawing in the form of a single piece to feed into the blank, it is through the material with the carrier, laps, and blank together, in the form of components in a continuous feed, progressive deep drawing. This is shown in Fig. 1-12. However, due to the lack of intermediate annealing in progressive drawing, the material is required to have high plasticity. And because of the mutual restriction between the workpiece in the process of progressive deep drawing, the deformation degree of each station can not be too large. Due to the large amount of workpiece waste left between the parts, the material utilization rate is reduced.

Fig. 1-12 Desenho progressivo em tira (a) Desenho profundo com o material sem corte
(a) Deep drawing with the material without cutting
Fig. 1-12 Desenho progressivo de tira (b) Desenho profundo com corte
(b) Deep drawing with cutting
Fig. 1-12 Strip Progressive Drawing

According to the deformation zone of the material and the separation of the strip, the progressive deep drawing can be divided into two technological methods: without and with technological notches.

  • Progressive drawing without cutting, that is, drawing on the whole strip material, as shown in Fig. 1-12 (a). Due to the mutual constraints between the two adjacent deep working parts, the material is difficult to flow in the longitudinal direction, and it is easy to crack when the deformation is large.

Therefore, the degree of deformation of each process can not be large, so the number of stations is more. The advantage of this method is to save materials.

Due to the difficulty of material longitudinal flow, it is only suitable for drawing parts with large relative thickness [ ( t/D ) × 100 > 1 ], small relative flange diameter ( dt /d = 1.1 ~ 1.5 ) and low relative height h/d.

  • Progressive drawing with notches is to cut all openings or slits adjacent to the part, as shown in Fig. 1-12 (b). The interaction and constraint of the two adjacent processes are small, and the drawing at this time is similar to that of a single blank. Therefore, the drawing coefficient of each process can be smaller, that is, the number of drawings can be less, and the mold is simpler. But the raw material consumption is more. This kind of drawing is generally used for drawing more difficult, that is, the relative thickness of the parts is small, the relative flange diameter is larger and the relative height is larger.

Empty Station Design

The empty station is designed to ensure the strength of the die and facilitate the installation and adjustment of the punch and the installation of a special structure or a possible increase in the need for a station. The principle is as follows.

  • For small step spacing (less than 8mm), more empty stations should be set; for large step spacing (more than 16mm), more empty stations should not be set.
  • More empty stations can be set for the positive pin positioning; otherwise, fewer empty stations should be set.
  • For high-precision punching parts, fewer empty stations should be set.

By controlling the total number of stations, the size of the multi-station progressive die with a large profile size can be controlled to reduce the cumulative error and improve the precision of punching parts. In the process layout, as shown in Fig. 1-13, the fourth and sixth stations are vacancies.

Fig. 1-13. Schematic Diagram of Vacancy
Fig. 1-13. Schematic Diagram of Vacancy

Carrier Design

In the design of a multi-station progressive die, the working procedure parts are transferred to each working station for blanking and forming processing, and the working procedure parts keep stable and correct positioning in the dynamic feeding process, which is called the carrier. The Carrier and general stamping layout of the edge have similar, but the role is completely different. The edge is set to meet the process requirements of cutting the workpiece from the strip material, and the carrier is designed to carry the working procedure on the strip material to the subsequent station. According to the shape of the punching piece, deformation properties, material thickness, and other different conditions, the carrier generally has the following forms.

Edge Material Carrier

Edge material carrier is a form of using the scrap material as a carrier. At this time, there are scrap materials around the whole workpiece. This carrier has good stability and simplicity, as shown in Fig. 1-14.

(a) A peça de trabalho (b) Diagrama de layoutFig. 1-14. Um exemplo de um transportador de material lateral
(a) The workpiece (b) Layout diagram
Fig. 1-14. An Example of a Side Material Carrier

Unilateral Carrier

A single side carrier is referred to as a single carrier, which is a material with a certain width set aside on one side of the strip material and is connected with the working procedure in an appropriate position to realize the carrying of the working procedure parts. A single carrier is suitable for punching parts with thickness t above 0.5m, especially for parts with bending at one end or in several directions. This is shown in Fig. 1-13.

Bilateral Carriers

A bilateral carrier is also called the standard carrier, referred to as both side carrier. It is a material with a certain width set apart on both sides of the material to carry the working procedure parts, and the working procedure parts are connected in the middle of the two sides of the carrier, so the double carrier is more stable than the single carrier and has higher positioning accuracy. This carrier is mainly used for thin material ( t ≤ 0.2mm ), the workpiece precision is higher occasions, but the utilization rate of the material is reduced, often in a single arrangement. This is shown in Fig. 1-15.

Fig. 1-15 Bilateral Vector
Fig. 1-15 Bilateral Vector

Intermediate Carrier

The intermediate carrier is similar to the unilateral carrier, but the carrier is located in the middle of the strip, as shown in Fig. 1-16. It is less material than a single-sided carrier and double-sided carrier. It is widely used in the process layout of bending parts. It is most suitable for the parts with material thickness t greater than 0.2mm and symmetrical bending on both sides. The width of the intermediate carrier can be flexibly controlled according to the characteristics of the parts, but should not be less than the width of the single carrier.

Fig. 1-16 Intermediate Vectors
Fig. 1-16 Intermediate Vectors

Selection of Positioning Form

Because the multi-station progressive stamping is to distribute the stamping process of the product in several stations to complete, the punching edge of the front and rear station process parts can be accurately connected and matched, which requires that the process parts can be accurately positioned in each station.

Positioning can be divided into vertical and horizontal, vertical and bar feed direction is the same, and horizontal and bar feed direction is vertical. General vertical positioning includes distance and guide, and transverse positioning guide material.

The positioning methods commonly used in the progressive die are shown in Table 1-1.

Positioning way LegendScope of application
Pin de parada  Legenda1t > 1,2 mm, requisitos de precisão do produto de tamanho grande (IT10~IT13)Forma simplesAlimentação manual
Lâmina lateralLâmina de lado único Legenda2t = 0. 1-1,5 mmIT11 ~ TT14 precisãoNúmero de localização 3-10
Lâmina lateralAmbas as lâminas lateraisLegenda3 t = 0. 1-1,5 mmIT11 ~ TT14 precisãoNúmero de localização 3-10
Mecanismo de alimentação automática  A máquina está equipada com um mecanismo de alimentação automática
Pino guia  Requer alta precisão e é usado em combinação com forma de posicionamento aproximada
Tabela 1-1 Modo de posicionamento de peças de processo de matriz progressiva

Posicionamento da borda lateral

O posicionamento com a lâmina lateral geralmente deve ser disposto na primeira posição, o objetivo é fazer com que o início do material de estampagem possa ser enviado de acordo com uma certa distância do passo. Quando a lâmina lateral funciona, ela corre uma tira estreita para o lado da tira. O comprimento da tira é igual à distância do passo, que é usada como distância de alimentação.

Existem 3 tipos de formatos de lâminas laterais, conforme mostrado na Fig. 1-17. Conforme mostrado na Fig. 1-17 (a), é uma lâmina lateral retangular, que é simples de fabricar. No entanto, após a lâmina lateral ficar cega, rebarbas aparecerão na borda do material após o corte, afetando a alimentação e o posicionamento preciso do material. A Fig. 1-17 (b) mostra a lâmina lateral dentada, que supera a deficiência da lâmina lateral retangular, mas é difícil de fabricar.

Conforme mostrado na Fig. 1-17 (c), a aresta do canto afiado é inserida no entalhe da aresta do canto afiado para controlar a distância do passo. Embora o material seja economizado, o material da barra precisa ser movido para frente e para trás durante o blanking, o que é inconveniente de operar, por isso é usado principalmente no blanking de metais preciosos.

Fig. 1-17 Forma da Lâmina Lateral
Fig. 1-17 Forma da Lâmina Lateral

Quando o lote de produção de estampagem é grande, a borda dupla é usada e a borda dupla pode ser colocada na diagonal ou simetricamente. Conforme mostrado na Fig. 1-18. Adote uma borda dupla, a precisão da peça de trabalho é maior do que a de uma única borda. Quando a tira é destacada de uma lâmina lateral, a segunda lâmina lateral ainda pode definir a distância.

Fig. 1-18 Forma de Lâmina Bilateral
Fig. 1-18 Forma de Lâmina Bilateral

A espessura da lâmina lateral é geralmente de 6 a 10 mm e o comprimento é o comprimento da distância de alimentação do material. O material pode ser feito de aço T10, T10A, CrL2, dureza de têmpera de 62 ~ 64 HRC.

Posicionamento do pino guia

Conforme mostrado na Fig. 1-19, o posicionamento do pino guia é para corrigir a posição da barra inserindo o pino guia instalado na matriz superior no orifício guia na barra, para manter a posição relativa correta entre o punção , a matriz e as peças de trabalho.

Fig. 1-19 Princípio do Pino Positivo1 – Punção de fechamento; 2 ―Pino condutor; 3―Perfuração para perfuração do orifício guia
Fig. 1-19 Princípio do Pino Positivo
1―Punho em branco; 2 ―Pino condutor; 3―Perfuração para perfurar o orifício guia
  • Diâmetro do orifício principal

O orifício principal da matriz progressiva está principalmente disposto no transportador da tira (também pode ser disposto no orifício da peça de processo).

Portanto, o tamanho do diâmetro do furo do pino guia afeta diretamente a taxa de utilização do material. Não pode ser muito grande, mas também não pode ser muito pequeno, caso contrário, a força do pino principal não pode ser garantida. Ao determinar o diâmetro do orifício guia, fatores como espessura da folha, material, dureza, tamanho do blank, forma e tamanho do transportador, esquema de layout, guia, requisitos de precisão do produto e características estruturais, velocidade de processamento e assim por diante devem ser considerados de forma abrangente . A Tabela 1-2 é o valor empírico do diâmetro do furo principal.
Borda lateral da borda lateral do bloco da matriz da barra.

T (mm)dmin (milímetros)
<0,51.5
0,5≤ t ≤1,52.0
> 1,52.5
Tabela 1-2 valor empírico do diâmetro do furo principal
  • Posição do orifício principal

O pino positivo pode ser positivo de duas maneiras: direta e indireta. A chamada guia direta é usar o orifício da própria peça do produto como orifício guia, o pino guia pode ser instalado no punção, mas também pode ser configurado separadamente. Um guia indireto é o uso de um transportador ou resíduos fora do orifício de guia especial para guiar.

O pinhole principal está geralmente fora da primeira estação e o pino principal está imediatamente após a segunda estação. Depois disso, deve ser ajustado a uma distância igual a cada 2~4 estações. Os orifícios principais podem ser duplos ou simples, dependendo da forma da peça de trabalho e da estrutura da matriz. Quando a largura da tira é grande, os orifícios dos pinos principais devem ser duplos.

O pino guia está no posicionamento fino do procedimento de trabalho. Às vezes, causará a deformação ou arranhões do orifício guia, portanto, as peças do produto com alta precisão e requisitos de qualidade devem evitar a guia direta na peça de trabalho.

Posicionamento Misto da Borda Lateral e Pino Guia

Quando a lâmina lateral é misturada com o pino guia, a lâmina lateral é usada para posicionamento aproximado e o pino guia para posicionamento preciso. A Fig. 1-20 mostra um diagrama esquemático da combinação dos dois. Neste momento, a marcação da borda lateral e o orifício do pino guia devem ser colocados na primeira posição, e o pino guia deve ser colocado na posição após o furo guia de perfuração.

Fig. 1-20 Diagrama Esquemático do Trabalho da Borda Lateral e do Pino Guia 1 – Haste guia; 2―A faca lateral para a borda do material; 3―Bloqueio de borda lateral; 4 ― Pino guia
Fig. 1-20 Diagrama Esquemático do Trabalho da Borda Lateral e Pino Guia
1 ― Haste guia; 2―A faca lateral para a borda do material; 3―Bloqueio de borda lateral; 4 ― Pino guia

Exemplo de layout

Processo de design de layout

As partes mostradas na Fig. 1-21 são tomadas como exemplos para ilustrar o processo de design do layout. Por se tratar de uma peça curva, antes de mais nada, deve-se descobrir seu diagrama de expansão (se a peça de estampagem, esta etapa pode ser omitida; Para peças de estampagem profunda, é necessário calcular o tamanho das peças em bruto, Os tempos de desenho, o tamanho dos produtos semi-acabados e a largura das tiras após cada desenho antes do layout e, em seguida, de acordo com o primeiro layout de espaços em branco, depois o design do contorno da ponta de perfuração e as etapas finais do layout do processo.

Material da peça: latão Espessura do material 1 mmFig. 1-21 Peça de trabalho de dobra e seu diagrama de expansão
Material da peça: latão Espessura do material 1 mm
Fig. 1-21 Peça de trabalho de dobra e seu diagrama de expansão
  • Layout em branco

A Fig. 1-22 mostra as quatro formas de layout do blank após a expansão das peças de dobra. Toda a área da peça de trabalho é de cerca de 1133,1 mm (incluindo o orifício quadrado no meio da peça de trabalho e os pequenos orifícios em ambas as extremidades). Após o cálculo, a taxa de utilização de material de cada layout é respectivamente: ηuma = 1133,1/(64 x 26,6) = 0,67, ηb = 1133,1/(26 x 64,3) = 0,68, ηc = 1133,1/(25 x 64,3) = 0,7, ηd = 1133,1/(52 x 30,1) = 0,72.

Fig. 1-22 Padrão de Layout (a,b)
(a) (b)
Fig. 1-22 Padrão de Layout
Fig. 1-22 Padrão de Layout (c,d)
(cd)
Fig. 1-22 Padrão de Layout

Assim, a Fig. 1.22 (a) tem a menor taxa de utilização do layout, e a Fig. 1.22 (d) tem a maior taxa de utilização do layout. No entanto, a Fig. 1-22 (d) faz a inclinação da peça, o que exige que os módulos da matriz progressiva também sejam ajustados. O processo de fabricação do molde é complexo, como mostrado na Fig. 1-22 (c) Embora o layout tenha uma alta taxa de utilização de material porque a peça de trabalho é conectada apenas no meio, não é propício para a alimentação estável das estações subsequentes. Geralmente acredita-se que a estabilidade de alimentação do layout na Fig. 1-22 (b) e Fig. 1-22 (d) é boa, então o layout mostrado na Fig. 1-22 (b) é selecionado aqui.

  • O design da forma da aresta de corte

De acordo com o layout fixo do blank, o diagrama de decomposição da aresta de corte como mostrado na Fig. 1-23 pode ser projetado. Primeiro, perfure o orifício positivo, dois orifícios pequenos e o orifício quadrado do meio, para que você possa usar o orifício positivo para posicionamento no processamento subsequente. Como os quatro lados devem ser dobrados, é necessário separar a parte dobrada do material da tira antes de dobrar. Para simplificar a estrutura do molde e garantir a resistência do molde, a ranhura de conexão entre as duas peças de trabalho é acelerada em duas etapas. Depois é só cortar as partes que estão presas nos dois lados da tira para dobrá-la.

Fig. 1-23 Desenho da Forma da Borda de Punção
Fig. 1-23 Desenho da Forma da Borda de Punção
  • Layout do processo

Com base no projeto de layout acima, projete o desenho do layout do processo conforme mostrado na Fig. 1-24. Existem 6 estações de trabalho: furo de perfuração e guia, dois furos pequenos e o furo quadrado médio na primeira estação de trabalho; Posição aberta na segunda estação; A terceira e a quarta posição de trabalho em duas etapas fora da conexão entre as duas peças de trabalho; O quinto é um assento vazio. A 6ª posição dobra e separa a peça de trabalho do material.

Fig. 1-24 Diagrama de Layout do Processo
Fig. 1-24 Diagrama de Layout do Processo

Desenho de layout

Após a conclusão do projeto de layout, ele é finalmente expresso na forma de um desenho de layout. O desenho do layout do processo pode ser desenhado de acordo com as etapas a seguir.

  • Primeiro, desenhe uma linha horizontal e, em seguida, desenhe o centro de cada estação de acordo com a distância de entrada determinada.
  • Da primeira estação, desenhe o conteúdo do processamento de estampagem. Tal como a primeira incisão da estação, desenhe apenas a forma da incisão; Se a primeira estação for perfurar o orifício positivo ou a distância da borda lateral, o orifício positivo ou a borda cega deve ser desenhado.
  • Para extrair o conteúdo de processamento da segunda estação, neste momento a primeira estação fora do orifício ou boca cortada também deve ser desenhada.
  • Desenhe o conteúdo de processamento da terceira estação, mesmo que esteja vazia, também deve ser desenhada, e a forma processada pela primeira e segunda estação também deve ser expressa aqui.
  • E assim sucessivamente, até que todas as estações sejam desenhadas, o último passo é o blanking, bastando desenhar a forma do blanking.
  • Verifique se o conteúdo de cada estação está desenhado corretamente e modifique o local incorreto.
  • Após a verificação e, em seguida, desenhe a forma da tira, se o layout usando o posicionamento da borda lateral da moldagem, deve desenhar a forma de processamento da borda lateral, desta vez a forma e o tamanho da tira serão determinados.
  • Para a conveniência do reconhecimento do mapa, o conteúdo de processamento de cada estação pode ser desenhado na linha de corte ou pintado com cores diferentes.
  • Rotule as dimensões necessárias, ou seja, distância de alimentação, largura do material, diâmetro do pino principal, largura da borda lateral, etc., e anote a direção de alimentação, o número de estações e o nome do processo de estampagem de cada estação.

Um exemplo concreto de um desenho de layout é mostrado na Fig. 1-24.

Postagens Relacionadas

Um pensamento sobre “How to Layout and Design Multi-station Progressive Die

  1. Magzhan disse:

    O artigo é muito profissional, vou usá-lo para referência no futuro

Deixe um comentário

O seu endereço de e-mail não será publicado.